首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4389篇
  免费   735篇
  国内免费   418篇
化学   3106篇
晶体学   51篇
力学   278篇
综合类   47篇
数学   442篇
物理学   1618篇
  2024年   7篇
  2023年   122篇
  2022年   100篇
  2021年   164篇
  2020年   219篇
  2019年   167篇
  2018年   143篇
  2017年   132篇
  2016年   200篇
  2015年   173篇
  2014年   253篇
  2013年   271篇
  2012年   390篇
  2011年   362篇
  2010年   270篇
  2009年   272篇
  2008年   288篇
  2007年   282篇
  2006年   278篇
  2005年   188篇
  2004年   131篇
  2003年   110篇
  2002年   95篇
  2001年   78篇
  2000年   84篇
  1999年   98篇
  1998年   86篇
  1997年   88篇
  1996年   65篇
  1995年   89篇
  1994年   73篇
  1993年   44篇
  1992年   58篇
  1991年   45篇
  1990年   39篇
  1989年   25篇
  1988年   16篇
  1987年   12篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有5542条查询结果,搜索用时 15 毫秒
31.
Dopamine (DA) plays an essential role in the central nervous, renal, hormonal and cardiovascular systems. Various modified carbon nanotubes (CNT)-based dopamine sensors have been reported, but inexpensive, highly sensitive plain CNT-based ones are seldom studied. In this work, a facile and inexpensive CNT-based DA sensor is made by rich-defect multi-walled carbon nanotubes (RD-CNT) via an ultrasound method. The defect and elemental states of the RD-CNT are systematically studied by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, X-ray powder diffraction (XRD) and X-ray-photoelectron spectroscopy (XPS). Results show that massive holes and cracks exist in RD-CNT. The level of defects increases from the additional exposed edges. The electrochemical characterizations indicate that the electrochemical sensor has the highest sensitivity of 438.4 μA/(μM ⋅ cm2) among all carbon materials-based DA sensors while well meeting the clinically required detection range and selectivity. The DA sensor was further used to detect live healthy human serum and live PC12 cells with satisfactory results, thus holding great promise for an inexpensive but sensitive DA sensor in practical applications of clinical diagnosis and biological research.  相似文献   
32.
Fine-tuning electronic structures of single-atom catalysts (SACs) plays a crucial role in harnessing their catalytic activities, yet challenges remain at a molecular scale in a controlled fashion. By tailoring the structure of graphdiyne (GDY) with electron-withdrawing/-donating groups, we show herein the electronic perturbation of Cu single-atom CO2 reduction catalysts in a molecular way. The elaborately introduced functional groups (−F, −H and −OMe) can regulate the valance state of Cuδ+, which is found to be directly scaled with the selectivity of the electrochemical CO2-to-CH4 conversion. An optimum CH4 Faradaic efficiency of 72.3 % was achieved over the Cu SAC on the F-substituted GDY. In situ spectroscopic studies and theoretical calculations revealed that the positive Cuδ+ centers adjusted by the electron-withdrawing group decrease the pKa of adsorbed H2O, promoting the hydrogenation of intermediates toward the CH4 production. Our strategy paves the way for precise electronic perturbation of SACs toward efficient electrocatalysis.  相似文献   
33.
Mature microRNAs (miRNAs) in extracellular vesicles (EVs) are involved in different stages of cancer progression, yet it remains challenging to precisely detect mature miRNAs in EVs due to the presence of interfering RNAs (such as longer precursor miRNAs, pre-miRNAs) and the low abundance of tumor-associated miRNAs. By leveraging the size-selective ability of DNA cages and polyethylene glycol (PEG)-enhanced thermophoretic accumulation of EVs, we devised a DNA cage-based thermophoretic assay for highly sensitive, selective, and in situ detection of mature miRNAs in EVs with a low limit of detection (LoD) of 2.05 fM. Our assay can profile EV mature miRNAs directly in serum samples without the interference of pre-miRNAs and the need for ultracentrifugation. A clinical study showed that EV miR-21 or miR-155 had an overall accuracy of 90 % for discrimination between breast cancer patients and healthy donors, which outperformed conventional molecular probes detecting both mature miRNAs and pre-miRNAs. We envision that our assay can advance EV miRNA-based diagnosis of cancer.  相似文献   
34.
Synthesis of cyclohexanone oxime via the cyclohexanone-hydroxylamine process is widespread in the caprolactam industry, which is an upstream industry for nylon-6 production. However, there are two shortcomings in this process, harsh reaction conditions and the potential danger posed by explosive hydroxylamine. In this study, we presented a direct electrosynthesis of cyclohexanone oxime using nitrogen oxides and cyclohexanone, which eliminated the usage of hydroxylamine and demonstrated a green production of caprolactam. With the Fe electrocatalysts, a production rate of 55.9 g h−1 gcat−1 can be achieved in a flow cell with almost 100 % yield of cyclohexanone oxime. The high efficiency was attributed to their ability of accumulating adsorbed hydroxylamine and cyclohexanone. This study provides a theoretical basis for electrocatalyst design for C−N coupling reactions and illuminates the tantalizing possibility to upgrade the caprolactam industry towards safety and sustainability.  相似文献   
35.
Despite conspicuous merits of Zn metal anodes, the commercialization is still handicapped by rampant dendrite formation and notorious side reaction. Manipulating the nucleation mode and deposition orientation of Zn is a key to rendering stabilized Zn anodes. Here, a dual electrolyte additive strategy is put forward via the direct cooperation of xylitol (XY) and graphene oxide (GO) species into typical zinc sulfate electrolyte. As verified by molecular dynamics simulations, the incorporated XY molecules could regulate the solvation structure of Zn2+, thus inhibiting hydrogen evolution and side reactions. The self-assembled GO layer is in favor of facilitating the desolvation process to accelerate reaction kinetics. Progressive nucleation and orientational deposition can be realized under the synergistic modulation, enabling a dense and uniform Zn deposition. Consequently, symmetric cell based on dual additives harvests a highly reversible cycling of 5600 h at 1.0 mA cm−2/1.0 mAh cm−2.  相似文献   
36.
Using the diphosphine-cobalt-zinc catalytic system, an efficient asymmetric hydrogenation of internal simple enamides has been realized. In particular, the Ph-BPE ligand can achieve convergent asymmetric hydrogenation of E/Z-substrates. High yields and excellent enantioselectivities were obtained for both acyclic and cyclic enamides bearing α-alkyl-β-aryl, α-aryl-β-aryl, and α-aryl-β-alkyl substituents. Hydrogenated products can be applied for the synthesis of useful chiral drugs such as Arfromoterol, Rotigotine, and Norsertraline. In addition, reasonable catalytic mechanism and stereocontrol mode are proposed based on DFT calculations.  相似文献   
37.
Polycyclic aromatic hydrocarbons (PAHs) with a one-dimensional (1D), ribbon-like structure have the potential to serve as both model compounds for corresponding graphene nanoribbons (GNRs) and as materials for optoelectronics applications. However, synthesizing molecules of this type with extended π-conjugation presents a significant challenge. In this study, we present a straightforward synthetic method for a series of bis-peri-dinaphtho-rylene molecules, wherein the peri-positions of perylene, quaterrylene, and hexarylene are fused with naphtho-units. These molecules were efficiently synthesized primarily through intramolecular or intermolecular radical coupling of in situ generated organic radical species. Their structures were confirmed using X-ray crystallographic analysis, which also revealed a slightly bent geometry due to the incorporation of a cyclopentadiene ring at the bay regions of the rylene backbones. Bond lengh analysis and theoretical calculations indicate that their electronic structures resemble pyrenacenes more than quinoidal rylenes. That is, the aromatic sextets are predominantly localized along the long axis of the skeletones. As the chain length increases, these molecules exhibit enhanced electronic absorption with a bathochromic shift, and multiple amphoteric redox waves. This study introduces a novel synthetic approach for generating 1D extended PAHs and GNRs, along with their structure-dependent electronic properties.  相似文献   
38.
Alanine is widely employed for synthesizing polymers, pharmaceuticals, and agrochemicals. Electrocatalytic coupling of biomass molecules and waste nitrate is attractive for the nitrate removal and alanine production under ambient conditions. However, the reaction efficiency is relatively low due to the activation of the stable substrates, and the coupling of two reactive intermediates remains challenging. Herein, we realize the integrated tandem electrochemical-chemical-electochemical synthesis of alanine from the biomass-derived pyruvic acid (PA) and waste nitrate (NO3) catalyzed by PdCu nano-bead-wires (PdCu NBWs). The overall reaction pathway is demonstrated as a multiple-step catalytic cascade process via coupling the reactive intermediates NH2OH and PA on the catalyst surface. Interestingly, in this integrated tandem electrochemical-chemical-electrochemical catalytic cascade process, Cu facilitates the electrochemical reduction of nitrate to NH2OH intermediates, which chemically couple with PA to form the pyruvic oxime, and Pd promotes the electrochemical reduction of pyruvic oxime to the desirable alanine. This work provides a green strategy to convert waste NO3 to wealth and enriches the substrate scope of renewable biomass feedstocks to produce high-value amino acids.  相似文献   
39.
Perovskite nanocrystals (PeNCs) deliver size- and composition-tunable luminescence of high efficiency and color purity in the visible range. However, attaining efficient electroluminescence (EL) in the near-infrared (NIR) region from PeNCs is challenging, limiting their potential applications. Here we demonstrate a highly efficient NIR light-emitting diode (LED) by doping ytterbium ions into a PeNCs host (Yb3+ : PeNCs), extending the EL wavelengths toward 1000 nm, which is achieved through a direct sensitization of Yb3+ ions by the PeNC host. Efficient quantum-cutting processes enable high photoluminescence quantum yields (PLQYs) of up to 126 % from the Yb3+ : PeNCs. Through halide-composition engineering and surface passivation to improve both PLQY and charge-transport balance, we demonstrate an efficient NIR LED with a peak external quantum efficiency of 7.7 % at a central wavelength of 990 nm, representing the most efficient perovskite-based LEDs with emission wavelengths beyond 850 nm.  相似文献   
40.
The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46–67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit. Finally, efficient electroluminescence properties with high-quality blue emission (CIE (0.179, 0.119)) and a narrow full-width at half-maximum of 48 nm are achieved for DNaDBSO-based SS-OLET, showing good spatial control of the recombination zone in conducting channel. This work provides a new avenue for designing ambipolar emissive organic semiconductors by incorporating the synergistic effect of energy level regulation and molecular-metal interaction, which would advance the development of superior optoelectronic materials and their high-density integrated optoelectronic devices and circuits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号